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Abstract
This work presents the analytical sclution for the

vibrations of a pertable grinder disk, its elastic

parameters evaluation by comparing experimental data
[1I  with calculated

frequencies and, eventually, a

numerical  solution feor vibrations under aperating
conditions which impose a very quick rotation to the
disk. These results are worked out for twa kinds of
disks: normal disks and high internal damping disks,
the latter having been recently introduced with the aim
of noise reduction. A comparison between calculated
data and experimental data obtained in 1] shows a good
accordance between

experimental apparatus and

theoretical model.

Nomenclature

R1 Disk internai radius.

Rc Disk external radius.

h Disk thickness.

wilx,y,t) Disk displacement

E Young module.

S Potsson’s ratio.

u mass density per unit surface.

w frequency.

30 Bessel function of first kind.

Y0 Bessel function of secend kind.

() Moedified Bessel function of first kind.
K(} Medified Bessel function of second kind.
o} Radial load.

o Tangential Ioad.

I. Introduction

The increasing interest in acoustic pollution drives

technicians and engineers to get concerned with new

methods for reducing (ndustrial machinery acoustic

emission in factories. Since acoustic emission is
generally connected with the vibrations of some machine
component, many of today researches are devoted to
vibration contreol.
This article is related to the modal analysis and
elastic parameters estimation of two classes of grinder
disks: damped and non damped.

Since a grinder emits almost all of its noise through
the vibration of jts disk, the passive control with
appropriate internal damping of these vibrations seems
the most efficient way to reduce noise, increasing

comfort for the operator. One of the techniques
employed to make “damped disks" is to inclose into the
abrasive agglomerate constituting the disk a sort of
rubber layer which performs, through its hysteresis, a
high internal damping actioen.

A full and very comprehensive experimental comparison
between damped and non damped disks has been done by
the same authors in [I} taking into account acoustic
emission and experimental modal testing, In spite of
its completeness, the

experimental work [L] needs

support by a theoretical-numerical approach in an
interdependent way:

1) The comparison between experimental and calculated
determination of elastic

frequencies permits the

parameters; these parameters, Poisson’s ratio x and
Young Module E, are important for a characterization of
the tested material, and their knowledge constitutes
the basis for numerical investigations.

2) The numerical determination of normal modes can take
account of centrifugal forces due to the disk rotation

present while disk is operating: using these numerical




results we can validate the experimental tests and go

beyond them estimating alsc freguencies not found in

laboratory.
For these reasons, the present mnote is basically
composed of three parts: the solution of free

vibrations for a disk clamped on an inner circumference

and free on the external boundary; the parameters
estimation by comparing experimental and theoretical
frequencies; a finite element modal analysis that takes
into account disk rotation and graphically shows the

first modes.

2. Theoretical modes evaluation

In this section the solution for the free vibrations of
a circular plate clamped on its inner circumference Rl
and free at Re are worked out. Fig.l shows the disk and
the boundary constraints. We consider the plate lying
in the xy plane with the deflection wix,y,t} taking
place =zlong the 2z direction. We assume that the
deflection is small compared to the plate thickness h,
that no tangential action is present on the surface of
the disk and we neglect the rotatory inertia forces due
to bending. The displacement equation of motion for the
free vibration is (see for instance |2])
Vz(vzw] + U e.’i?‘_w =0
at

£n®

2 (1)
12(1-k")

where E denotes Young's module, p is the mass density

per unit surface and k is the Poisson's ratio.

wi,y.t)

Figure.l. The disk
Since our boundaries are circular

the

it is convenient to

express deflection w in cylindrical coordinates

wir$,t).  In  eylindrical coordinates the Laplace
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operator reads

2z ” z
V2=a——+l%—+l—az (23
arz roer J"2 a9
With the separation of variables
wir,g,t) = ulr,9li1(t) (3
equation (1) splits in two
3
__Ii? vy - pwtu = 0 (4}
12(1-k7)
2
% P WY =0 (s)
dt
From eq.(4) taking (2} into account we obtain
2 z
6u+igu+126§=t72u (6)
arz d roag
Z, 2
in which 'xd= iZ(l—ncs}pw
Eh
We apply again the separation of variables
u(r,9) = ¢(rlg(e) (mn
eventually obtaining
z
2| @™ ¢ 1 dojl 2| _ 2
=% * 7 arle r ¥ =n (8)
di
z
1d€ 2 (9
£ ags?

So the general solution of eq.{7) may be expressed as
the product of two sets of functions satisfying eq. (8)
and [9)

u=la J lyr)sb I {gr)sc Y (gr)sd K (yr)] cos(no+8) (i0)
nn nn nn n n

The first term
the disk,
kind J(z} and

of the preduct gives the radial shape of
functions of the first
of the second kind Y{(z) plus Modified
functions I(z)=J{iz) and K(zl=Y{iz).

and contains Bessel

Bessel The second
term shows bow diametrical nodes depend on n.
Remembering eq (3) and (5) we can express the vibration

time dependency

w = ulr,®) coslwt+y) (11}

A first boundary condition states the congruence of

displacements along circumferences
ulr,8) = ulr,6+2n} (i2)

from this eguation and eq.(10) it immediately follows



that n must be an integer, that is: only Bessel

functions of integer order have to be considered.
For the clamped circumference the deflection and the

slope of deflection must be zero

ulr,dl = G for r = Rl (13)
au
a—r—O fc:r:"—Rl {(14)

For the free edge the bending moment and the shearing

force must be zero

2
%B_:*'%g_ﬁ*'%i%":() fm‘r'=.Re (15)
ar r 89
z 2 ]
GiTu e dge. L2 L2 o o
"3 roer r- a9 r aﬁz

Applying these conditions to eq.(10) we find at each n
an homogeneous system of four equations with a = {an bn
c d )} unknown.
N 11
Za =0 (17)
nn
The coefficients of these four equations may be set in
a 4x4 matrix, say 2, which must have determinant equal
n

to zero in order to obtain non trivial solution for a.

In full detail the elements of Zn matrix are

S S S S

2 - S %2 %2 S

i %31 %2z %23 Saa

Sar %2 Sa Su

ST ST

S ™ Ta S = Ky
Ca” % T St g Ll
S2a” g Yoo S % KooK

with all the Bessel functions calcutated in '.rR‘

2 -
L E3Y LI
CJI_ R Jn (n oty J TR Jn JnH]
- - e
nq 2 3 [ n
' Loty - 3Tl e In+1]
L] nd -]
n®n 2 afn
C33= R Yn-[n Yy + 7} R, Yn- Ynn]
., L
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2 3 1
Kty -7 )[ﬁ: Ky Kn.l]
c

L&, §

caf ﬁRZn [7% In+ In*l.. +Rz(n2n * ?2)1“
. ]

G ~7RD —?; Y - Ynﬂ_ +R2 "y - o)
L¥, i

oo™ -arR::n -% K - Km]- +Ri(n2n + ::Z)Kn
AL |

with all Bessel functions calculated in ',ch and n = l;f:'

e
Note that care has to be taken in perferming the second
2

order derivatives gu These derivatives have been
ar ’

worked out using eq.(6) which allows us to compute

second order derivatives evaluating only first order

derivatives of u with respect to r avoiding too expen-

sive calculations; the sign faor the right term of

eq.{(6) is minus for Bessel functicns J and Y and plus
for Modified Bessel functions I and K (see also [5]).

The determinant of matrix Zn depends on Rl, Re. ¥ and
K, while it dees not depend on E. At any integer number
n, which gives the number of diametrical nodes, we find
vajues

det(Z ) =
o

infinite of ¥ say zrn'm satisfying equation
¢, m giving the number of circumference
nodes. Finally we can find the natural frequencies w oo
from the definition of 7. '
It can also be notsd that det[Zn] does depend just on
the twe products ';Ri ere and on the two parameters n
and k (it can be verified multiplying by R‘j the second
row of Zn and by R: the third row), sc we may find for

R

,m e

example solutions of det(Zn) =0 in term of C
given the ratio Rl/Re, the Poisson's ratio k, and n.

Zeros of det[Zn) can be found whit a simple bisecting
routine since det(Zn) is a smooth and well behaving

function.

3. Experimental and thecretical data comparison versus

parameters estimation

Since the value of det{zn) depends on Poisson’s ratio

K, which is unknown, a straightforward solution for

eigenvalues is impossible.

While the value of w ovary with the square root of E,




the ratio between
2 2 )
W, 2/&15 2 does not depend on Young's module. So,

in principle,

two freguencies, say for example

v o=
we could calculate & trying to approach
the ratio between any two experimental frequencies with
the ratio between the twa correspondent calculated
frequencies. Nevertheless after a look at matrix Zn it

is easy to see that

pim a7 _ o} (18)
dK
n-=so
and numerical investigations prove that already for

n=23 7 is almost independent frem x. For this
n,m
reasen it seems convenient to consider the ratie
¥
0,0
v o= —— = k) (19)
?3.0

in which the numerator presents a geod sensitivity on k
variations, and the denominator which can be considered

constant for k variations is related to a well

evaluated experimental mode.
Starting frem a trial value of x in matrix £, we can
n

receive an approximate estimation of v and of the rate
v -
g—K then we can calculate a better value of v using the

Newton-Rapson formula

K = k- vik) S8 (20)
-1 i Vodv
K
!
This method gives sufficient precision after a very

small number of iterations.

Table 1 shows the characteristics of two disks, normal
and with high internal damping {the last one is called
"silentium" after its commercial name), that come out
applying the above outlined methods on the experimental

data reported in [1} as well as in table iV and V.

Table 1. Properties of standard ana silentium dizks
NON DAMPED SILENTIUM
w = 4618 rad/s w = 3990 rad/s
0,0 0,0
[A) = 10870 rad/s w = 8922 rad/s
3,0 3,0
p = 2560 kgsm® p = 2560 kg/m’
x =0.19 k= 0.26
E = 1.88el0 N/m” = [.31el0 N/m®
The interpretation of these values must take into
account the nature of the disk material which is not

nomogeneous, The "damped” disk is made of an abrasive

agglomerate plus a rubber net lying in a "sandwich-
like" manner in the middle of the disk. This kind of
structure may recall layered materials for which
special and quite complicated theories have been
developed (see for instance [4]). In spite of this, it
seemed appropriate and sufficient, at the present, to
consider an homogeneous disk; the elastic properties

reported in table I should be thought as belenging to
this homogeneous madel.

Table 1II

reports the calculated frequencies for “non

damped" disk while table III contains frequencies of

"silentium" disk. These values have been obtained for

the elastic properties shown in table [

Table II. Modal frequencies (Hz) of "non damped” disk.

n

m 0 1 2 3 4 S

0 735 721 954 1731 (2933 |4463

1 4716 |5001 |5902 {7491 [9715 12378
2 1378811412 |15175(17018]|19710 23229J

table [Il. Modal frequencies {Hz)} of "silentium” disk

oo 1 2 3 4 5
m
0 635 | 615 | 787 |1422 [2419 (3693
1 |a039 |az73 is015 16347 |8247 |10631
2 J11756|12038|12918|14467|16738[ 19713

Table IV and V reports the experimental data obtained
testing respectively "non damped" and “silentium™ disk;

these tests are fully reported in [1].

table Iv. Flrst extperimental frequencles {Hz) of “non
damped™ disk
JHoo 1 2 3 4 5
o] 735 505 915 {1730 [2950 [4425
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table .

Flrst experimental frequencles (Hz) of "silen-
tlum" disk
oo 1 2 ] 3 4 5
0 635 | 440 | 815 |1420 2395 |3610

Comparing tables [[ to table IV and III te V, we note a
good accordance between experimental and theoretical

data: only @ 4 does

»

“silentium”™ and "nen damped" disk. This frequency cor-

not match properly for either

responds te the "hat-brim” mode reported in fig.4. This
mode and the subsequent one, the “saddle-like" shown in
fig.5, are very influenced by constraint geometry [(i.e.
R] value). Probably the gripping apparatus of the disk,
which has been fully described in f1] and which is the
same used on grinders, did not guarantee a perfectly

circular fixed joint of radius Ri.

4. Numerical solution with centrifugal force

in order to find modes and frequencies of the disk in

operating ceondition, i.e. while spinning at 8500 ropm,
we must take centrifugal forces into acecount.

In presence of a radial load p and of a tangential load

q, eq.l becomes
a*w h d dw h a*w

ER” 4
VWt — - - —(pre=) - ~— g = 0(2!)
I2(1-fc2) atz r ar ar rz 6152

which can be integrated only numerically (for example
by- the Ritz method}.

We decide now to follow ancther way of solution: with
the previcus determined elastic properties, a numerical
analysis is now possible with a finite element model.

In fig.2 the finite element mesh of the disk is shown.

Flgure 2. Flnits element mesh.
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The mode! for the finite element analysis (F.E.A.), is

constituted of 420 rplate elements", (30 sectors by 14

tracks} having almost equal area to avoid orthotropic

flaws in the solution. All the degrees of freedom are
frezen for the nodes belonging to the inner circumfer-
ence of radius R:' The centrifugal forces acting on
each element have been calculated for 850C rpm and ap-
plied to the inner ncdes of the elements themselves.
These inertia forces vary from about 20 N on the inner
elements to 70 N on the outer ones,

From this finite element model we obtain the commen
flexional meodes mixed with the so called "membrane
modes” which do not involve any disk bending. These nen
bending meodes do not produce any scund so they are
scarcely interesting and they are not reported.

Figs.3 to 10 show the first 10 modes and frequencies.

Figure.3. "Bowl-1lke” mode; non damped disk 750 Hz,
silentlum disk 649 Hz.

Figure.4. "Hat-brim” mode; non damped dlsk 741 Hz,
sllentlum disk 635 Hz.



Fleure.5 “Saddle-like” mode; non damped disk 83 Hz. y

slleptlum disk 919 Hz Flgure.8. n=5, m=0; non damped disk 4504 Hz,

silentlum disk 3735 Hz

Figure.9. n=0,m=1; non damped disk 4761 Hz,
sllentium disk 4D32 Hz.

Figure.8, n=3, m=0; non damped disk 1754 Hz, .
sllentium disk 1451 Hz

Figure.10. n=l,m=1l; ton damped dlsk 5048 Hz,
silentlum disk 4319 Hz.

Figure.7. n=4, m=0; non damped disk 29862 Hz,
silentium disk 2449 Hz
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Flgure.il. n=2,m=1; non damped dlsk 5954 Hz,
sllentlum disk 5083 Hz,

Flgure.l2, n=6,m=0; non damped dlsk 6378 Hz,
silentium disk 5301 Hz.

For the first five modes the frequencies obtained from
F.E.A. - when compared to those reported in tables i
and Il - are 27 higher Tor non damped disk and 37
higher for “silentium" disk. This s only due to the
F.E.A.
inertia forces gives frequencies that very closely ap-

proach tables 1l and Il {errors less than 20/00).

centrifugal forces since an without these

5. Medel’s adequacy discussion and conclusions

The theoretical model, for whom an analytical solution
of equation (1) has been worked out, gives results in a
gocd accordance with the experimental data.

The analytical solution together with the experimental
data let us find the elastic properties of the disks.
Silentium disks are less stiff and have a higher Pois-
son's ratio than standard disks: differences are due to

the rubber layer presence.

Theoretical and experimental frequencies do not match
only for the “hat-brim" mode: this could probably be
avoided by changing the design of the gripping device
in the experimental apparatus, but rising the risk of
leosing contact with real tools.

From the F.E. analysis it has resulted that taking into
acceunt centrifugal forces in predicting the vibration
frequencies results in very small differences. On the
other hand, calculating frequencies by using eq.{17)
and forcing det(Zn] to zero takes the "runs" a thousand
times shorter than by F.E.A.

Nevertheless, F.E.A. provided in a straightforward man-
ner the clarifying figures 2 to 12 representing the
normal modes; these figures could also be drawn on the
basis of the theoretical soluticn, but it would have
been a complicated and time-wasting experience.

In future developments of this research some theoretic-
about the

al considerations forcing action and the

nature of damping will be done.
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