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Abstract 
Surface diffusion and edge scattering are wavy phenomena which are usually badly 
reproduced by room acoustics software, based on geometrical acoustics assumptions. This 
paper presents some recent improvements to the Pyramid Tracing algorithm, which take into 
account the scattering of sound from the edges of finite-size surfaces, and the surface 
diffusion coefficient (as defined and measured in a parallel paper). 
 
 
1. Precis 

Moving from the definition of a new, physically-based "diffusion coefficient", as reported 
in a parallel paper, in this work it is described how it is possible to implement this concept 
inside a well-known room acoustic numerical model, based on the Pyramid Tracing approach. 
The modified algorithm does not suffer of increased computation time, because it was 
possible to maintain a single geometrical tracing, covering simultaneously 10 octave bands.  

In practice, the diffusion coefficient is taken into account as follows: when a pyramid hits 
a surface with (frequency-dependant) diffusion coefficient greater than zero, an amount of the 
reflected energy (correspondent to the diffusion coefficient value) is converted from the 
"specular energy" container to the "diffuse energy" container. Thereafter, the remaining 
specular energy is applied only to the receivers inscribed within the pyramid boundaries, 
whilst the diffuse energy is applied to all the receivers in front of the surface hit. The 
propagation algorithm takes into account properly for the total path of the pyramid, from the 
virtual source position to each receivers, and compensates for the geometrical spreading of the 
diffused energy over a 2π steradians solid angle. 

Furthermore, the edge diffraction effect was also better taken into account: previously this 
was considered only for receivers shielded behind obstructing surfaces, now the edge 
contribution is computed also for receivers which are not shielded. This is obtained making 
the diffusion coefficient to increase when the pyramid axis hits near the boundary of a face. 
The value of the diffusion coefficient is made to vary linearly from the original value for the 
central part of the surface (at λ/2 from the edge) up to 1 (at the edge). 

The combination of these improvements made it possible to obtain numerical simulations 
in close agreement with the experimental results (which are presented in a parallel paper). In 
particular, the numerical model was employed for obtaining a large number of impulse 
responses, for receivers placed at little distance each other along a straight line. The Wave 
Field Synthesis theory was applied for comparing the numerical results with the experimental 
ones, and it was found that, when the proper value for the diffusion coefficient is employed, 
the discrepancies are below the measurement error. 
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2. Introduction 
In a parallel paper [1] the definition of a measurable diffusion coefficient is investigated. 

It was concluded that the actual proposal being circulated in the AES-Standards SC-04 [2,3] is 
a robust, realistic measurement of the scattering uniformity, and thus is a good descriptor of 
the comparative quality of different diffusers: this is certainly the primary point for 
manufacturers of diffusing panels. But it was also concluded that such an uniformity 
descriptor does not correspond with the quantity usually employed in room-acoustics 
simulation software. 

The basis of most room acoustics software is a simplified propagation theory, usually 
known as “geometrical acoustics”: under this theory, the sound propagates along straight paths 
(“sound rays”) with constant speed, and bounces over delimiting surfaces obeying to the 
specular reflection Snell’s law. In most cases, only flat surfaces are considered, and curved 
surfaces are approximated with many, little flat segments. In such a scheme, wavy phenomena 
such as diffraction, interference and diffusion are not correctly modeled, although their 
macroscopic effect can be added through various corrective techniques. 

The first important distinction, which needs to be made, is the separation between edge 
scattering and surface diffusion. In practice, these two things are not always well separated, 
because often diffusing surfaces are made of many smaller ones, presenting a lot of edges, so 
that it is not clear if the diffusion of sound is caused by the surfaces or by their edges. And the 
diffusion uniformity coefficient suggested in [2,3] does not make any separation between 
them. 

But, under the geometrical acoustics assumptions, a flat, polished surface can only cause 
specular reflections, and diffusion can occur only at its edges, and only if at the edge a sort of 
discontinuity is present (i.e., a free edge). When a large surface, such as a wall or a ceiling, 
presents an uneven surface, usually this is not modeled drawing each little detail of the surface 
itself, because the geometrical acoustics assumptions require that each surface is large 
compared to the wavelength. Instead, the surface is drawn flat, but a “diffusion coefficient” is 
assigned to it, for instructing the program to take into account, in some way, of the capability 
of the real structure to redirect the sound in directions different from the one described by the 
Snell’s law. 

In these terms, the diffusion coefficient is a property which relates to an uniform, 
theoretically infinite surface, with no reference to the edge effects. 

On the other hand it is of experimental evidence, as shown in [1], that the free edges of a 
perfectly flat and polished surface are the locus of redirection of a relevant part of the reflected 
sound. This redirected energy seems to originate from local sound sources located exactly on 
the edge of the panel, instead of from a virtual sound source located well behind the panel, as 
it happens for the  specularly reflected energy. So, independently from the possible presence 
of a surface diffusion effect in the middle of the surface, there is always an edge effect to take 
into account. 

If a numerical model of the edge effect was good enough, drawing all the geometrical 
details of a rough surface would produce a realistic simulation of the sound energy reflected 
back from it, in any direction. In practice, the strong simplifications inherent with the 
geometrical acoustics approach makes this goal unrealizable, at least until we do not decide to 
forget the geometrical acoustics limitations, and to move to a true wave simulation, for 
example thanks to a Boundary Element formulation. 

So the theoretical scenario in which we are moving is a typical geometrical acoustics 
model, with added the surface diffusion effect and the edge effect. Both these effects are in 
general frequency-dependent: this means that the diffusion coefficient δ has a different value 
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at each frequency, and similarly the edge proximity has to be evaluated in comparison with the 
wavelength. 

 
3. Theoretical formulation of the diffusion coefficient 

In most room acoustics computer programs [4,5], and also in the pyramid tracing 
approach discussed here [6], the diffusion coefficient δ is defined as the ratio between the 
energy reflected in a diffuse way and the total reflected energy. Going in more detail, the 
reflected energy has to be separated in a specular part and in a diffuse part. Fig. 1 illustrates 
the conceptual scheme of this separation.  

The specular part is the one which seems to originate by a virtual image source, obtained 
by the specular reflection of the true source on the “mirror” constituted by the surface. If the 
surface is of finite size, this energy only flows within a sort of pyramid, defined by the virtual 
image source as vertex and the reflecting surface as base. Only receivers located within the 
prosecution of this pyramid (under its base) will receive the specular energy, which can be 
computed as: 
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In this formula the following notations were used: 
Ispec is the sound intensity (W/m2) which arrives at the receivers located within the above 
defined pyramid, 
 
W is the total power radiated from the point source (in Watts), 
Qθ is the directivity factor in the direction along which the sound was radiated toward the 

reflecting surface, 
r1 is the distance between the sound source and the reflecting surface, in m 
r2 is the distance between the reflecting surface and the receiver, in m 
α is the absorption coefficient of the surface (usually not considered angle-dependent) 
δ is the diffusion coefficient of the surface (usually not considered angle-dependent) 
 

Another part of the total reflected energy is re-irradiated in a diffuse way. This can be 
seen as the radiation of many, little sources, placed on the whole surface, each of them 
redirecting the energy which was impinging on a small surface element having area dA. All 
these elementary sources contribute to the energy which arrives at a receiver (located 
everywhere in the hemispace in front of the reflecting surface), following this equation: 

 

 ( ) ( )
∫ ⋅⋅

⋅π⋅

δ⋅α−⋅ϕ⋅
⋅π⋅

⋅
= ϕ

ϑ

A
2

2
12

1
diff dAQ

r2

1cos
r4

QW
I

2
 (2) 

 
In which these new symbols were used: 
 
ϕ1 is the angle between the local normal to the surface and the ray arriving from the 

sound source (which is long r1 m), 
ϕ2 is the angle between the local normal to the surface and the ray going to the receiver 

(which is long r2 m), 
Qϕ2 is the radiation directivity in direction ϕ2. It can be taken constant and equal to 1 

(uniform diffusion), or varying with 2·cos(ϕ2) (Lambert’s law), 
A is the total area of the reflecting surface in m2. 
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It can be noted that W·(1-α)·δ can be taken out of the integral. In most cases, the single 

energy contributions are not directly summed, as the model takes into account the travel time, 
and stores separately each energy arrival as function of the travel time, for the construction of 
the energetic impulse response. 

Obviously, the implementation of the previous equation is too complex for being 
employed in a fast numerical model, and thus it has to be simplified. 

The method described here is based on the “pyramid tracing” scheme, which was already 
described in detail by the author in [6,7,8]. In substance, as shown in fig. 2, the radiation from 
the sound source is subdivided in a large number (Npyr) of triangular beams, each having the 
same solid angle (although not always the same exact shape). So, the discretisation of the 
small area elements dA can be seen as the subdivision of the surface A in the triangles 
obtained by intersection with the pyramids launched from the source, as depicted in fig. 2. 

Each pyramid which hits the reflecting surface cause a single energy contribution to each 
receiver “seen” in the hemispace in front of the surface. A first approach for computing this 
individual contribution can be obtained assuming uniform diffusion (Qϕ2=1) and observing that 
the elementary area element dA·cos(ϕ1) is given simply by 4·π·r1

2/Npyr; this yields to: 
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This produces correct results only if the receiver is far from the reflecting surface. If 

instead the receiver is very close to the reflecting surface, the finite meshing of it and the fact 
that the re-irradiated diffuse energy is assumed to come out from a single point source at the 
center of the area element can cause intolerable artifacts. In fact, if the value of r2 is very little, 
it can well happen that the diffuse intensity Idiff becomes greater than the incident intensity: 
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Obviously this is a paradox. For avoiding it, it is necessary to dilute the re-irradiated 

energy over the area of the elementary surface defined by the intersection of the pyramid with 
the reflecting surface. This suggests the following formulation: 
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Which substantially comes back to the previous one when r2 is very large, but reduces to 

the diffuse intensity on the surface as r2 goes to zero. 
Now the edge effect will be taken into account. It must be evidenced that the edge effect 

was already included in the original Pyramid Tracing formulation, but only for those receivers 
which were shielded behind an obstructing surface [6,7]. This was implemented through the 
Kurze formulation [9]. This approach is not satisfying for the receivers which are in the 
hemispace facing the reflecting surface, so another method was added. 

In practice, when a pyramid hits a surface near an edge, the local value of the diffusion 
coefficient δ is increased towards 1. This begins to happen at a distance of λ/2 from the edge, 
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and the increase of the diffusion coefficient is linear starting from the original value δ0 (valid 
for the central region of the surface, far from the edges). The following equation was 
employed for recomputing the local value of δ, as function of the distance e from the edge: 
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4. Extension to higher-order reflections 

The formulation presented here holds at this point only for the first reflection. The 
extension to multiple reflections introduces further problems, so that some room acoustic 
programs limit the accurate treatment of diffusion only to first or second order reflections, 
therefore switching to a more simplified diffusion approximation. Widely used approaches are 
the randomization of the direction of the specularly-reflected energy and the hybridization 
with a statistical treatment of the reverberant tail. 

In the first approach, first a random number, bounded between 0 and 1, is generated at 
each reflection: if the value is higher than the diffusion coefficient δ, then the reflection is 
computed specularly, following the Snell’s law. If instead the random number is lower or 
equal to δ, a new direction for the reflected energy is randomly generated, perhaps taking into 
account a probability distribution corresponding to the Lambert’s law. This approach is very 
effective for pure ray tracing methods, but it can work also with diverging beam tracers, 
provided that a reasonably high number of beams is generated. In any case, this method causes 
the program to behave in a MonteCarlo way, exhibiting statistical convergence to stable 
results only by increasing the number of beams. Another defect is that, for taking into account 
the dependence of δ with the frequency, it is necessary to repeat the whole calculations for 
each frequency band. 

In the second approach, at each reflection a part of the energy associated with the ray (or 
beam) is stripped away, and goes to a common energy repository. Of course, the stripped 
energy is the product of δ and the total reflected energy after the reflection; the remaining (1-
δ) fraction of the reflected energy prosecutes the specular propagation. After the computation 
is prosecuted and terminated in a deterministic way for the survived specular energy, the 
whole amount of energy stored in the “diffuse repository” is employed for computing a 
statistical reverberant tail, which is added to the specular one, following consolidated 
statistical theories such as Sabine or Eyring. This approach is clever and satisfying, but it has 
the defect to rely on statistical assumptions which holds only for regular spaces, and is not 
well suited to the study of “strange” rooms such as workshops, tunnels, and so on. 

For overcoming the limits connected with actually employed schemes, but maintaining 
complete coherence with the general assumptions of the Pyramid Tracing implementation 
known as Ramsete [6,7,8], a new multiple diffusion model was developed.  

First, it is necessary to remind that in the original (diffusion-less) implementation the 
program was employing a not-hybrid approach, following each pyramid for its whole history, 
and avoiding carefully to superimpose any reverberant tail coming from statistical theories. 
Furthermore, the computation was made simultaneously in 10 octave bands, with a single 
geometrical simulation: this caused the program to be much faster than the others who had to 
repeat the ray tracing for each frequency. 

These features were considered very important also after introducing the diffusion model. 
So the new approach was to maintain the tracing of each pyramid for its whole history, but 
recomputing at each reflection the amount of “specular” and “diffuse” energy associated with 
that pyramid. No “common diffuse repository” was defined. 
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In practice, each pyramid always starts with the whole energy assigned to be “specular”, 
and without any “diffuse” energy (although it is straightforward to implement an extension of 
the algorithm allowing for “diffuse” sound sources, such as Distributed-Mode Loudspeakers 
[10]). At each reflection, a fraction of the reflected energy proportional to δ is passed to the 
“diffuse” container, whilst the remaining energy remains “specular”. This can be easily 
implemented maintaining a single energy value associated with the pyramid, but computing an 
incremental total diffusion coefficient δtot after each reflection, as function of the previous 
value of δtot and the new value of δ of the actual reflection: 

 
 ( ) δ⋅δ−+δ=δ tottottot 1  (7) 

 
After this, any higher-order reflection can be treated as a first-order one, employing eqn. 

(1) and (5) for computing the intensity received within the pyramid (specular) and everywhere 
(diffuse). In doing that, we must account for the multiple reflections: thus, in place of (1-α), 
we have to consider the product of all the (1-α) values encountered at each reflection, and r1 is 
in this case the total path r1totfrom the original sound source to the last reflection point. So 
these two equations can be re-written as: 
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It must be noted that a receiver located within the pyramid will receive both these 

intensities. After a long path (in the late part of the reverberant tail), the value of δtot is almost 
1, and the pyramid base is so huge that all the receivers are always within it. So in practice the 
received intensity comes back to the same value which was computed by the previous, 
diffuse-less version of the program. 

The introduction of the diffusion algorithms produces relevant modification only of the 
early part of the computed impulse response, as the first reflections, which previously resulted 
as isolated sharp peaks, are now followed by small diffuse tails, and this makes the simulation 
to look (and sound) much more realistic. 

This means that also the original diffusion-less formulation of the Pyramid Tracing 
algorithm produced in practice a diffuse reverberant tail, but in that case the progressive 
transition between the first part of the echogram (deterministic and specular), and the second 
part (statistical and diffuse) was governed by the value of the critical time tc: 
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As shown, tc depends from the mean free path lcm and from the adimensional shape 

factor β, which are invariant for a given geometrical case, but also from the number of 
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pyramids Npyr. This explains why, for each case, there was an “optimal” number of pyramids, 
and when this was exceeded, the simulation accuracy tended to reduce instead of improving. 

With the new formulation, the transition between the specular and diffuse behavior is no 
more governed by the number of pyramids, because eqn 9 compensates for it. Instead, the 
transition depends on the rapidity with which the running incremental diffusion coefficient δtot 
approaches 1, and this is affected by the values of the diffusion coefficient of the surfaces hit, 
but also on the number of edges which are included in the geometry under test. 

 
 

5. Experimental verification 
As the new diffusion algorithm is running, at the time of writing, only since a couple of 

months, it was not possible to conduct a large-scale validation experiment yet. Here only a 
simple comparison with the experimental results presented in [1] will be presented. 

Fig. 3 shows the geometrical CAD model of the case under test, which closely correspond 
to the laboratory setup described in [1]: a loudspeaker is mounted flush in the floor (so that we 
can disregard completely the presence of the floor itself), and a diffusing panel is suspended 
above it. 255 microphone positions are considered, along a straight line passing horizontally, 
midway between the loudspeaker and the panel, and an highly-detailed impulse response is 
recorded at each microphone (time resolution is approximately 66 µs). 

This geometrical setup allows for the employ of the mathematical processing tools known 
as Wave Field Synthesis [11], which makes it easy to recompute the sound field in other 
(virtual) positions starting from the measured (or computed) data along the straight line. This 
feature was employed for the computation of the reflected energy over a circular arch, as it is 
required for the evaluation of the “diffusion uniformity coefficient” described in [2,3]. 

Four cases were modeled: a flat, polished panel (no surface diffusion, only edge effects), 
an highly diffusing flat panel (a Schroeder-type diffuser) and a curved, polished surface both 
in the direction of maximum diffusion and of minimum diffusion (rotated 90°). 

The experimental results of the same four cases are presented in [1]. Figs 4, 5, and 6  
show the results of the numerical simulations obtained with Ramsete-II (pyramid tracing with 
diffusion) at 1 kHz of the first three panels. For checking the similitude of the numerical and 
experimental results in a quantitative way, a sort of “pattern-matching” between the images 
was attempted. In practice, each image is a matrix, having 255 columns and 400 rows (26 ms), 
and each cell contains a sound intensity (in W/m2). So it is possible to compute an RMS 
percentage error, and express it in dB, with the following expression: 
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This value is an indicator of the simulation’s error in comparison with the experimental 

result, and can be assimilated to a sort of a Noise-to-Signal ratio. 
Each simulation was repeated 3 times, with different values of the diffusion coefficient δ: 

in the first case it was assumed to be zero (diffusion-less),  in the second case it was set equal 
to the newly-defined quantitative diffusion coefficient δopt, derived in [1] from the 
experimental results, and in the third case it was set equal to the “diffusion uniformity 
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coefficient” δuc, defined in [2,3] and also computed in [1] from the experimental results. The 
following table presents the obtained results, in terms of the average error E: 

 
 
 
Values of the percentage error, in dB, between numerical and experimental results 

Parameter Flat Panel Galav2 diffuser curved panel curved panel (90°) 
α 0 0.03 0.286 0.76 
δ 0.117 0.86 1 0.20 

δuc 0.35 0.86 0.92 0.52 
E0 -4.12 +3.45 +1.70 -3.99 
Eδ -4.28 -4.75 -6.42 -4.71 

Eδuc -3.73 -4.75 -5.21 -4.33 
 
It can be seen how the error is slightly reduced when the new quantitative diffusion 

coefficient δ is employed, although the use of the qualitative coefficient δuc is usually better 
than neglecting completely the diffusion. 

Looking at fig. 6, anyway, it is evident that modeling a curved diffuser as a flat surface 
produces a simulated sound field very different from the experimental one. This is due to the 
fact that a diffuse tail is produced, whilst in practice the reflected sound is always a sharp 
peak. Repeating the simulation, but having actually designed the true shape of the surface, and 
assigning to it a diffusion coefficient = 0, produces a more realistic simulation of a curved 
surface, as it is clearly shown in fig. 7. 

It remains to check how the sound of the simulated reflections resembles the experimental 
one, in terms of auditory perception. 

 
 

6. Conclusions 
From the results obtained, it can be concluded that the quantitative diffusion coefficient 

defined in par. 3 and employed in the Pyramid Tracing program Ramsete II, as in many other 
room acoustics programs, is definitely a different quantity from the “diffusion uniformity 
coefficient” recently proposed [2,3]. Nevertheless, if the proper value for the diffusion 
coefficient is employed, today’s numerical models provide a reasonably good emulation of the 
diffusion phenomena. 

The problem thus moves again to the experimental measurement of the diffusion 
coefficient, so that huge data-bases of diffusion coefficient values can be filled and distributed 
with room acoustics programs. In the meanwhile, most values of δ employed in room 
acoustics simulations will be simply invented, and in the only cases in which some 
experimental data is made available from the producers of commercial diffusors, probably 
these will be in the form of the diffusion uniformity coefficient, which can cause significant 
errors if employed in place of the “true” diffusion coefficient. 

This research will prosecute, in parallel with the experimental measurements already 
scheduled [1], with the goal to obtain the optimal values of the diffusion coefficient δopt which 
reduces to a minimum the discrepancy between numerical and experimental results. Although 
this way of deriving the actual values of the diffusion coefficient could appear inelegant and 
antiscientific, it must be noted that this approach is substantially the same employed for the 
estimate of the Sabine’s absorption coefficient: this is defined as the value of α which makes 
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the theoretical model (the Sabine’s equation) to maximally match with the experimental 
results. 

And, from a practical point of view, what is needed is simply to know the “right” values 
of the diffusion coefficient to assign, at each frequency, to various materials, so that our actual 
room acoustics numerical models produce substantially correct results. 
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Fig. 1 – Scheme of the separation of reflected energy into diffuse and specular 
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Fig. 2 – a pyramid impacting over a reflecting surface 
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Fig. 3 – CAD representation of the measurement setup 

 

 
Fig. 4 – numerical simulation of the diffusion from a flat, square panel (δ=0.117) 
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Fig. 5 – numerical simulation of the diffusion from a square diffuser (δ=0.86) 

 

 
Fig. 5 – numerical simulation of the diffusion from a curved surface, modeled as a flat panel 

with high diffusion coefficient (δ=1) 
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Fig. 6 - numerical simulation of the diffusion from a curved surface, modeled as a curved 

panel without diffusion coefficient (δ=0) 


