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ABSTRACT 
 
Nowadays it is possible to measure room impulse responses inside famous 
theatres and concert halls, and use them as filters for applying high quality 
reverberation to recordings and soundtracks. However, also spatial information 
can be measured and replicated this way, once the concept of omnidirectional 
source and receiver has been deleted.  
The paper will focus on the extension of the current measurement and rendering 
techniques, making use of arrays of sources and microphones, allowing for a 
compact and elegant representation of the spatial transfer function of a room, 
which preserves the reciprocity principle. 
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INTRODUCTION 
 

The concept of impulse response is nowadays widely accepted as a physical-mathematical 
model of the behavior of a linear, time-invariant system, characterized with just one input port 
and one output port. 

In acoustics, this concept is usually applied to the study of sound propagation from an 
emission point and a receiver point, located within the same environment. 

Nevertheless, this technique is usually implemented by means of an omnidirectional sound 
source, and by an omnidirectional receiver (pressure microphone). This way any spatial 
information is lost, both on the emission pattern of real sources, and on the direction of arrival of 
the wavefronts arriving on the receiver. 

In the past it was attempted to obtain partially some spatial information by means of directive 
transducers (both sources and receivers). But this happened without a rational basis, with just 
one significant exception, represented by the Ambisonics method derived by Gerzon in the 
seventies [1]. 

Recently, advanced impulse-response measurement techniques have been developed [2], 



capable of performances significantly better than previous methods; furthermore, it is now 
possible to build, at reasonable costs, multichannel sound systems making use of large arrays of 
loudspeakers and microphones. 

Only very recently a method for characterizing the emission directivity of sound sources has 
been proposed, employing the same mathematical basis already employed for characterizing the 
directivity of microphones. More specifically, this method was proposed by Dave Malham in 
2003 [3], and it employs an expansion of the directivity of a point sound source by means of 
1st-order spherical harmonics (O-format signal). 

We are proposing now to extend and generalize this approach: both the sound source and the 
receiver can be spatially characterized by means of an expansion in a series of spherical 
harmonics, stopping the expansion to a reasonably-high order (3rd, 4th or even 5th order). 

This way, a complete characterization of the spatial transfer function between the emission 
and receiver points is obtained. 

 
IMPULSE RESPONSE MEASUREMENTS 

 
When spatial information is neglected (i.e., both source and receivers are point and 
omnidirectional), the whole information about the room’s transfer function is contained in its 
impulse response, under the common hypothesis that the acoustics of a room is a linear, 
time-invariant system.  

This includes both time-domain effects (echoes, discrete reflections, statistical reverberant 
tail) and frequency-domain effects (frequency response, frequency-dependent reverberation). 

The following figure shows how a room can be seen, under these hypotheses, as a 
single-input, single-output “black box”. 

The system employed for making impulse response measurements is conceptually described 
in fig. 1. A computer generates a special test signal, which passes through an audio power 
amplifier and is emitted through a loudspeaker placed inside the theatre. The signal reverberates 
inside the room, and is captured by a microphone. After proper preamplification, this 
microphonic signal is digitalized by the same computer which was generating the test signal. 

 
Fig. 1 – schematic diagram of the measurement system 

A first approximation to the above system is a “black box”, conceptually described as a 
Linear, Time Invariant System, with added some noise to the output, as shown in fig. 2. 
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Fig. 2 – A basic input/output system 

In reality, the loudspeaker is often subjected to not-linear phenomena, and the subsequent 
propagation inside the theatre is not perfectly time-invariant.  

The quantity which we are interested to measure is the impulse response of the linear system 
h(t), removing the artifacts caused by noise, not-linear behavior of the loudspeaker and 
time-variance. 

The method chosen, based on an exponential sweep test signal with aperiodic deconvolution, 
provides a good answer to three above problems: the noise rejection is better than with an MLS 
signal of the same length, not-linear effects are perfectly separated from the linear response, and 
the usage of a single, long sweep (with no synchronous averaging) avoids any trouble in case the 
system has some time variance. 

The mathematical definition of the test signal is as follows: 
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This is a sweep which starts at angular frequency ω1, ends at angular frequency ω2, taking T 
seconds. 

When this signal, which has constant amplitude and is followed by some seconds of silence, 
is played through the loudspeaker, and the room response is recorded through the microphone, 
the resulting signal exhibit the effects of the reverberation of the room (which “spreads” 
horizontally the sweep signal), of the noise (appearing mainly at low frequencies) and of the 
not-linear distortion. 

These “distorted” harmonic components appear as straight lines, above the “main line” which 
corresponds with the linear response of the system. Fig. 3 shows both the signal emitted and the 
signal re-recorded through the microphone. 

 
Fig. 4 – sonograph of the test signal x(t) and of the response signal y(t) 



 
Now the output signal y(t) has been recorded, and it is time to post-process it, for extracting 

the linear system’s impulse response h(t). 
What is done, is to convolve the output signal with a proper filtering impulse response f(t), 

defined mathematically in such a way that: 
 

)t(f)t(y)t(h ⊗=  
The tricks here are two: 
to implement the convolution aperiodically, for avoiding that the resulting impulse response 

folds back from the end to the beginning of the time frame (which would cause the harmonic 
distortion products to contaminate the linear response) 

to employ the Time Reversal Mirror approach for creating the inverse filter f(t) 
In practice, f(t) is simply the time-reversal of the test signal x(t). This makes the inverse filter 

very long, and consequently the above convolution operation is very “heavy” in terms of 
number of computations and memory accesses required (on modern processors, memory 
accesses are the slower operation, up to 100 times slower than multiplications). 

However, the author developed a fast and efficient convolution technique, which allows for 
computing the above convolution in a time which is significantly shorter than the length of the 
signal. [4] 

It must also be taken into account the fact that the test signal has not a white (flat) spectrum: 
due to the fact that the instantaneous frequency sweeps slowly at low frequencies, and much 
faster at high frequencies, the resulting spectrum is pink (falling down by -3 dB/octave in a 
Fourier spectrum). Of course, the inverse filter must compensate for this: a proper amplitude 
modulation is consequently applied to the reversed sweep signal, so that its amplitude is now 
increasing by +3 dB/octave, as shown in fig. 5. 

 

 
Fig. 5 – Fourier spectrum of the test signal (left) and of the inverse filter (right) 
 
When the output signal y(t) is convolved with the inverse filter f(t), the linear response packs 

up to an almost perfect impulse response, with a delay equal to the length of the test signal. But 
also the harmonic distortion responses do pack at precise time delay, occurring earlier than the 
linear response. The aperiodic deconvolution technique avoids that these anticipatory response 
folds back inside the time window, contaminating the late part of the impulse response. 

Fig. 8 shows a typical result after the convolution with the inverse filter has been applied. 
 



 
Fig. 6 – output signal y(t) convolved with the inverse filter f(t) 

 
At this point, applying a suitable time window it is possible to extract just the portion 

required, containing only the linear response and discarding the distortion products. 
The advantage of the new technique above the traditional MLS method can be shown easily, 

repeating the measurement in the same conditions and with the very same equipment. Fig. 9 
shows this comparison in the case of a measurement made in an highly reverberant space (a 
church). 

 

 
Fig. 7 – comparison between MLS and sine sweep measurements 

 
It is easy to see how the exponential sine sweep method produces better S/N ratio, and the 

disappearance of those nasty peaks which contaminate the late part of the MLS responses, 
actually caused by the slew rate limitation of the power amplifier and loudspeaker employed for 
the measurements, which produce severe harmonic distortion. 

This method has nowadays wide usage, and is often employed for measuring high-quality 
impulse responses which are later employed as numerical filters for applying realistic 
reverberation and spaciousness during the production of recorded music [5]. 
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DIRECTIVE SOURCES AND RECEIVERS 
 

When we abandon the restriction to omnidirectional sources and receivers, it becomes possible 
to get also spatial information. A first basic approach is to “sample” the room’s spatial response 
with a number of unidirectional transducers, pointing all around in a number of directions. 

However, such an approach often ends in requiring to repeat a large number of measurements 
while rotating the transducers in steps, resulting in long measurement times. The approach, 
furthermore, is not easily scalable: all the measurements need to be performed and analyzed for 
“covering” uniformly a notional sphere surrounding each transducer. 

The approach proposed here is to employ a spherical harmonic expansion of sound field 
around the source and receiver points. This corresponds to a two-dimensional, spatial Fourier 
transform, conceptually similar to what is employed in image processing, but working in a 
spherical coordinate system instead of in a plane Cartesian one. 

This approach is the basis of the Ambisonics method [6], initially employed with an 
expansion limited to 0th-order and 1st-order spherical harmonics around the microphone. Here 
this concept is extended to higher orders, and adopted for describing both what happens at the 
source and at the receiver. 

For the sake of concision, here we report the mathematical formulas in polar coordinates, as 
function of the Azimuth angle A and the Elevation angle E, and a pictorial representation for the 
spherical harmonics of order 0, 1, and 2 – the equations for higher orders are indeed quite 
common to find. 

Table 1 – spherical harmonics up to 3rd order 

Order 
0 

0.707107 

 

Order 
1 

 
cos(A)cos(E) 

 
sin(A)cos(E) sin(E) 

Order 
2 

1.5sin2(E)-0.5 cos(A)sin(2E) 
 

sin(A)sin(2E) cos(2A)cos2(E) sin(2A)cos2(E) 
 
Unfortunately, “native” loudspeakers or microphones having directivity patterns 

corresponding to the above spherical harmonic functions are available only for orders 0 and 1 
(monopoles and dipoles). 

However it is possible to “synthesize” the pattern of a spherical harmonics by combining the 
signals being fed to, or coming from, a number of individual transducers being part of a 
closely-spaced transducer array.  

The recombination is possible with the following formula: 
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Where fi are a set of suitable “matched” FIR filters, designed in such a way to synthesize the 
required spherical-harmonic pattern. The design of the filtering coefficients can be performed 
numerically (least-squares approach), starting from a huge number of impulse response 



measurements made in free field and with a source (or receiver) located in P different polar 
positions around the transducer array. 

The system is solved with the least-squares approximation, imposing the minimization of the 
total squared error, obtained summing the squares of the deviations between the filtered signals 
and the theoretical signals vk: 
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The solution of an overconditioned system requires some sort of regularization. The 
Nelson-Kirkeby method [7] provides this solution (in frequency domain), which can be adjusted 
by means of the regularization parameter β: 
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These inverse numerical filters have the advantage that they automatically compensate for the 
deviation between the responses of the individual transducers, and also for acoustical shielding 
or diffraction effects due to the mounting structure. 

The most basic of such a closely-spaced transducer array is a spherical array. The following 
figure shows a source array and a microphone array. 

 

 
Figure 9 – spherical arrays of loudspeakers (left) and microphones (right) 

 
Once a set of spherical harmonics (in emission or in reception) has been measured, it is 

possible to recombine them for creating any three-dimensional polar pattern, with an error 
becoming smaller as the order increases. So it is possible to create the emission directivity 
pattern of a real musical instrument, or to synthesize the response of an ultra-directive virtual 
microphone, and to aim them in any direction wanted. 

This recombination, again, is trivial: it is just matter of summing the signals coming from 
each of the spherical harmonics patterns with proper gains. This is already well known with 
reference to the “receiving” spherical harmonics, which are employed for the reconstruction of a 
virtual sound field in the high-order Ambisonics method (HOA). The possibilities opened by the 
measurement of a set of impulse responses which are spatially-expanded in spherical harmonics 
both at the emission and reception ends is yet to be fully explored. 



However, the measurements can be efficiently performed employing a PC equipped with a 
multichannel sound card. Nowadays a system capable of 24 simultaneous inputs and 24 
simultaneous outputs can cost less than 3000 USD, all included. Such a system can be easily 
employed for performing measurements up to 3rd order (16 harmonics) both in emission and in 
reception: a sequence of 16 sine sweeps is played, each of them being simultaneously fed with 
different gains and polarities to the 24 individual loudspeakers being part of the spherical 
emission array. The signals of the 24 microphones are recorded, and subsequently processed for 
the deconvolution of the impulse response, and for recomputing the 16 spherical harmonic 
signals. At the end of the measurement, which takes approximately 8 minutes if 15s-long sweeps 
are employed, a complete set of 16x16=256 impulse responses are obtained. 

This set is a complete characterization of the room impulse response, containing both the 
time-frequency information, and the spatial information as “seen” both from the source and the 
receiver. It is therefore possible to derive subsequently, by post-processing the measured set of 
impulse responses, the virtual impulse response produced by a source having arbitrary 
directivity and aiming, as captured by a microphone also having arbitrary directivity and aiming. 

The data measured also allow for spatial analysis, computation of spatial parameters, pictorial 
representation of the spatial information as colour maps, and high quality rendering of the 
recorded spatial information by projection over a suitable three-dimensional sound playback 
system. 

 
SUMMARY 

 
The method proposed here can be seen as an extension and generalization of the method initially 
proposed by Gerzon for characterizing the acoustical response o concert halls for the posterity. It 
removes the limitation of the original approach, which did only deal with omnidirectional 
sources, and which did analyze the spatial information at the receiver by means of a 
spherical-harmonics expansion terminated after just the 1st order. 

It is expected therefore that, once a collection of these multi-input, multi-output impulse 
responses will have been measured in a significant number of theatres and concert halls, it will 
be possible to analyze these data for reaching a deeper understanding of the spatial properties of 
the sound field, and to assess how these spatial properties affect the human listening perception. 
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