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Abstract

In the present work, fully clamped rectangular isotropic 
plates are investigated: the response under steady-state 
excitation determined by harmonic point force application 

is calculated, and the consequent sound radiation is evaluated.
The study is carried out both analytically and numeri-

cally. At first, the analytical solution of the clamped-clamped 
plate motion equation is calculated by means of a MATLAB 
implementation. The solution is based on the Principle of 
Virtual Work, calculating the displacement as a function of 
frequency at the nodes of a rectangular mesh. The monopole 
approximation of Rayleigh’s integral is then used to estimate 

the sound radiation in free field propagation. The numerical 
solution is evaluated using COMSOL Multiphysics, employing 
the Finite Elements Method (FEM). The clamped plate is 
modeled as a shell and “Acoustic-Structure Boundary” 
coupling is employed.

Furthermore, the optimization of force application point 
is performed, with the aim of maximizing the radiated sound 
pressure level or flattening the frequency response. Very good 
matching between analytical and numerical methods has been 
found. In conclusion, a reliable prediction model of the sound 
pressure radiated by clamped plates in the low frequency range 
is achieved.

I.  Introduction
Sound radiators based on forced vibrations of a plate are 
becoming widely employed in the automotive field, where a 
trend of avoiding loudspeakers use for active sound reinforce-
ment and noise cancelling systems is observed [1, 2]. The 
authors are employing the outcome of the presented work for 
the development of a pedestrian alert system (AVAS): vibrating 
panels provided with shakers are used for controlling the 
sound field outside the vehicle.

The sound radiation of panels can be computed once 
the velocity of each point of the panel is known, as a 
response to the force applied in one point. Therefore, the 
analytical solution of the motion equation is required and 
depends on the boundary conditions. Numerous studies 
about dynamic response of plates with various boundary 
conditions can be  found in literature (a wide amount of 
work has been produced by Leissa [3, 4]) and the classical 
solution approaches are the Rayleigh-Ritz and superposi-
tion methods [5, 6, 7].

In this work, the plate in clamped condition is analyzed, 
and the Principle of Virtual Work is used, based on the 
approach explained in [8, 9], though the explicit formulae are 
reported in [10]. The fundamentals of this method were intro-
duced in [11]. As regards the sound radiation generated by the 
vibrating plate, it can be analyzed by the monopole approxi-
mation of Rayleigh’s integral. In fact, it provides an accurate 
approximation of the sound pressure in far field condition for 
relatively flat geometries operated in an infinite baffle [12, 13]. 
In details, the panel operates in free field and is clamped at 
the center of a rigid baffle that “splits” in two half-spaces the 
air surrounding the plate. The Rayleigh’s formula considers 
sound propagation in one of these half spaces.

The analytical solution of the problem is calculated imple-
menting the equations in MATLAB. Then, the results are 
compared with a numerical model obtained in COMSOL 
Multiphysics, employing FEM. To have truly comparable solu-
tions, the input parameters (e.g., mesh and frequency resolu-
tions, evaluation distance, material properties) are set equal. 
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In both cases, the output consists in a chart of Sound Pressure 
Level (SPL) vs frequency. To provide more reliable results, the 
SPL values are averaged over a grid of points, located at 1 meter 
distance from the plate.

A very good matching between analytical and numerical 
solutions is shown, thus cross validation of the two methods 
is achieved. Furthermore, the problem of identifying the 
optimal application point of the exciting force is investigated, 
showing that the maximum A-weighted SPL is obtained 
applying the force at the center of the plate. In addition, a 
different optimization of the excitation point is performed, 
with the aim of providing the flattest frequency response.

The paper is organized as follows. In section II, the theo-
retical basis of the analyzed problem is provided. In section 
III, the analytical and numerical methods are described. In 
section IV  and V, results are shown and compared, and 
section VI summarizes the conclusions.

II.  Theoretical Background

A.  Solution of Motion 
Equation for Fully Clamped 
Rectangular Plates

The motion equation of forced vibrations of a thin un-damped 
rectangular clamped plate, made of isotropic material with 
length a, width b and thickness h is:
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 is the bending stiffness of the plate, 

w is the displacement along z axis at point (x, y), ν is the 
Poisson’s ratio, E is the Young’s modulus, ρ is the density of 
plate and pext is the applied harmonic force. Letting:
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the equation becomes:
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Expanding W and P as the superposition of adequate 

shape functions [8, 9] one obtains:
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The shape functions can be decomposed as:
 �mn m nx y X x Y y,� � � � � � � (7)

where Xm and Yn are eigenfunctions that satisfy the 
boundary conditions of the plate, which are w w

z
� �
�

� 0 for fully 

clamped plates. Applying the Virtual Work Principle, one gets:
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where the virtual displacement is:
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After few mathematical steps that can be found in [8, 9, 
10] one obtains the dynamic response W(x, y) of a plate 
subjected to a harmonic point force:
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B.  Sound Pressure Evaluation 
with Rayleigh’s Integral

Due to the acoustic radiation occurring on the surface of the 
plate, an acoustic pressure P(r2, f) as a function of the frequency 
f at a point r2 located in air, at a significant distance from the 
plate can be calculated by Rayleigh’s integral [8, 9, 12]:
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where ρ0 is the air density, ω is the angular frequency of 
the plate, k is the wave number, S is the plate surface and 
|r2 − r1| is the distance between the calculation point in air 
and the radiation point r1 on the surface. It is possible to 
discretize the rectangular plate into N elements of areas ΔS, 
and thus to approximate the surface integral by a finite 
number N of surface elements with known properties:
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The resulting sound pressure level can be obtained:
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where p0 = 20 μPa is the reference sound pressure.
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It is also possible to define an accumulated acceleration 
[12], which neglects the phase information:
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and the corresponding Accumulated Acceleration 
Level (AAL):
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The AAL summarizes the total vibration of the radiator 
from an energetic point of view. AAL and SPL curves are 
identical up to the break-up frequency, i.e., as long as the 
surface of the radiator moves in-phase (pistonic motion). 
Above the break-up, acoustic cancellation phenomena occur, 
and the SPL becomes always lower than the AAL.

A mean SPL value can be calculated for estimating the 
average pressure level produced by a vibrating plate at the 
point r2, allowing to compare different excitation points, and 
thus to optimize the force application position, as described 
in section V. The mean SPL value can be obtained as:
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where nf is the number of frequencies. One can note that 
the numerator of (16) is the rms pressure. If A-weighting filter 
is applied, SPLavg(A)(r2) is obtained.

III.  Analytical and 
Numerical Models

Relying on [14, 15], the analytical solution of the motion 
equation of forced vibrations of a thin isotropic un-damped 
rectangular clamped plate was implemented in form of a 
MATLAB script.

An aluminum plate with dimensions a = 0.3 m, b = 0.2 m 
and thickness h = 1 mm was studied, having the following 
mechanical properties: density ρ = 2710 kg/m3, Poisson’s ratio 
ν = 0.33 and Young’s modulus E = 70 GPa. The frequency range 
of interest was between fmin = 150 Hz and fmax = 1 kHz, with 
frequency resolution ∆f = 2 Hz. The magnitude of the exciting 
force was F = 1 N. Air properties required for solving the 
Rayleigh’s integral were the following: ρair = 1.2 kg/m3 and 
speed of sound c = 343 m/s.

A rectangular grid was generated to discretize the plate: 
the spatial resolution of the mesh must have at least 6 points 
per wavelength to provide a correct solution [16]. Considering 
the frequency range of interest in this work, the maximum 
size of the elements would be about 0.057 m. It was opted to 
use a mesh resolution ∆s = 0.03 m, thus obtaining a total 
number of elements equal to N  =  60. Hence, the normal 
displacement matrix was calculated: it contains each node’s 
displacement in the normal direction caused by the applica-
tion of the harmonic force, as can be seen in Fig. 1, for the 
400 Hz frequency and force applied at the center.

Afterwards, exploiting plate’s symmetry, the exciting 
force was applied to all the nodes in the first quadrant of the 
mesh grid, sweeping them one by one and storing the solutions 
separately. The nodes on the edge of the plate were not excited, 
since they respect the boundary condition of fully clamped 

 FIGURE 1  Aluminum plate deformation at 400 Hz caused by the application of a 1 N harmonic force at its center.
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plate, i.e., they are fixed. To calculate the Rayleigh’s integral, 
the displacement matrix was derived, obtaining the normal 
velocity of the nodes at every frequency. Then, sound pressure 
and accumulated acceleration were calculated with (12) and 
(14) and converted to SPL and AAL curves with (13) and 
(15), respectively.

The numerical solution of the problem addressed in the 
present paper was obtained with a simulation in COMSOL 
Multiphysics. The model employed two modules, Pressure 
Acoustic - Frequency Domain and Solid Mechanics, related 
by the Acoustic-Structure boundary coupling. The plate was 
modeled as an aluminum shell having the previously described 
dimensions, clamped on a rigid baffle, and surrounded by an 
air sphere of 1 m radius. Material properties of aluminum and 
air were identical to the analytical solution. The rigid baffle 
was defined as “interior sound hard boundary” [16] and the 
radiation boundary condition for the air domain was “spher-
ical wave radiation” [16]. To have the best possible accordance 
between analytical and numerical models, the plate was subdi-
vided in a rectangular mesh, namely a “mapped” mesh, having 
the same number and dimensions of the elements in the 
analytical solution. The rigid baffle was meshed with “free 
triangular” elements, while “free tetrahedral” elements were 
used for the air (Fig. 2).

The simulation was calculated in the same frequency 
range and resolution of the analytical study, hence fmin = 150 Hz 
and fmax = 1 kHz, with a frequency resolution of Δf = 2 Hz. 
Also in this case, a unit force F = 1 N normal to the plate was 
applied at all the nodes of the first quadrant of the mesh, one 
at a time. Results were obtained in terms of AAL and SPL 
curves as a function of the frequency.

Finally, the effect of damping, which is always present in 
real systems, was introduced in the numerical model. It was 
defined as isotropic loss factor, having value η = 0.05. Damped 
and undamped numerical solutions are compared in this 
paper. The analysis will be extended to experimental results 
in subsequent works.

IV.  Comparative Analysis 
of the Analytical and 
Numerical Results

At first, AAL and SPL curves were calculated on-axis at one 
meter distance solving the analytical model. In Fig. 3 an 

example is shown for force appl ied at point 
(x = 0.21 m; y = 0.1 m). It is possible to observe the break-up 
at 200 Hz, where AAL and SPL curves diverge due to the 
acoustic cancellation. One can also note the resonance peaks 
which tend to infinite due to the absence of damping in the 
analytical solution.

Despite the evaluation at 1 m distance on-axis in front of 
the panel is a typical approach, it may result in misleading 
responses. In fact, it lacks important phase information of the 
radiated sound, resulting in a poorly realistic prediction of 
the generated sound field. For a practical use of the proposed 
method to evaluate the sound pressure produced by a vibrating 
plate, it must be considered that the listener could be standing 
in another position, for example out of the z-axis. For this 
reason, (12) and (14) were solved on a grid of 45 observation 
points arranged on a semi-sphere of radius r = 1 m concentric 
with the plate, as shown in Fig. 4, and then averaged.

In Fig. 5, it is clearly noticeable how space averaging can 
affect the results: some peaks of the AAL curve that were not 
present in the SPL curve of Fig. 3 (calculated only in one point 
on-axis) are now visible in the SPL curve. The average over 
the observation grid therefore allows a more realistic evaluation.

Then, the results obtained by the analytical and numerical 
models were compared. Fig. 6 shows the residual curves 
obtained by subtracting the SPL curves calculated by the two 
methods. The solutions were computed in both cases by 
exciting all the free points in the first quadrant of the mesh, 
which are 15 with the chosen discretization, and averaging 
each result over the grid of 45 observation points at 1 m 
distance. One can note that all the residual curves are in the 
range ±3 dB. The peaks in the residual curves correspond to 
the theoretically undamped resonance frequencies. 
Considering the good agreement obtained, it is possible to 
state that the two methods are validated and can be success-
fully employed for further studies.

Eventually, a numerical simulation was performed by 
introducing damping as an isotropic loss factor η = 0.05. In 
Fig. 7 it is possible to see the comparison between damped 
and undamped cases, for a force of 1  N applied at point 
(x = 0.21 m; y = 0.1 m) and evaluated at the observation grid. 
One can note the effect of damping in correspondence of the 
resonance frequencies, where the peaks are smoothed instead 
of going to infinite, as it happens in real systems.

 FIGURE 2  Mapped mesh with N = 60 elements for the 
numerical model of the plate, COMSOL Multiphysics.

 FIGURE  3  AAL (dash line) and SPL (solid line) curves, 
evaluated in a point on-axis at 1 m distance. Analytical solution, 
force applied in (x, y) = (0.21 m, 0.1 m).
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V.  Force Application Point 
Optimization 

The position of the exciting force may heavily affect the 
frequency response of the vibrating panels, raising the interest 
to investigate different force application points. For this 
reason, it was opted to sweep the force application point on 
all the nodes of the first quadrant of the mesh (considering 
the symmetry of the plate). Since this could provide hundreds 
of results, depending on the plate dimensions and mesh reso-
lution, some optimization strategies were developed to identify 
optimal SPL response. In Fig. 8, it is possible to see the curves 
obtained by exciting all the nodes of the first quadrant. In this 
case, the A-weighting filter was also applied, and we refer to 
them as SPL(A).

The basic approach is to maximize the A-weighted mean 
SPL, namely SPL_avg(A), calculated with (16). In Fig. 9, the 
comparison is shown superimposing numerical and analytical 
results, calculated averaging over 45 observation points. In 
both methods, the optimal application point of the force that 

 FIGURE 4  Grid of 45 observation points on a sphere of radius r=1m, centered with the plate.

 FIGURE 5  AAL (dash-dot line) and SPL (dot line) curves 
evaluated in one point on-axis at 1 m distance, and SPL (solid 
line) curve averaged over 45 observation points. Analytical 
solution, force applied in (x, y) = (0.21 m; 0.1 m).

 FIGURE 6  SPL curves averaged over 45 observation 
points, residual of the difference between analytical and 
numerical solutions. Force applied in all free points of 
first quadrant.

 FIGURE 7  SPL undamped (solid line) and SPL damped (dot 
line) curves averaged over 45 observation points, numerical 
model, force applied in (x, y) = (0.21 m; 0.1 m).
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maximizes the SPL_avg(A) is the center of the panel. One can 
note that both the SPL(A) curves and the values of SPL_avg(A) 
are well matched, with SPL_avg(A) = 90.8 dB(A) obtained 
from the analytical method and SPL_avg(A) = 90.7 dB(A) 
obtained from the numerical method.

If one instead assumes the optimal result to have the 
flattest frequency response, then the best application point 
can be obtained by evaluating the minimum standard devia-
tion of the A-weighted SPL curve among every excited point. 
The comparison of this case for the two methods is shown in 
Fig. 10, again averaging the results over the 45 observation 
points. It is possible to see also in this case a very good agree-
ment between the two solutions: the suggested exciting point 
is the same, and both the curves and the SPL_avg(A) values 
are well matched, with SPL_avg(A) = 80.7 dB(A) obtained 
from the analytical method and SPL_avg(A) = 79.1 dB(A) from 
the numerical method. One can note that the price for having 
a flatter spectrum is a reduction in terms of SPL_avg(A) of 
about 11 dB(A), compared to the maximum sound pressure 
level approach.

Finally, the optimization procedure allows to identify 
the optimal positions for the exciting force application 
points, which are shown in Fig. 11. As anticipated previously, 
the maximum SPL_avg(A) is obtained when the force is 
applied at the center of the plate (green dot). The flattest 
spectrum is obtained when the force is applied in correspon-
dence of the red dot. The two optimal positions for applying 
the exciting force resulted identical between the analytical 
and numerical models, thus confirming the validity of the 
proposed solution. 

VI.  Conclusions
Fully clamped vibrating rectangular plates were investigated 
to assess their acoustic performance due to single harmonic 
excitation force.

 FIGURE 8  SPL(A) curves obtained by exciting all the free 
points of the first quadrant.

 FIGURE 9  SPL(A) curves averaged over 45 observation 
points, maximum A-weighted Sound Pressure Level, analytical 
(solid line) and numerical (dash-dot line) solutions.

 FIGURE 10  SPL(A) curves averaged over 45 observation 
points, flattest spectrum, analytical (solid line) and numerical 
(dash-dot line) solutions.

 FIGURE 11  Optimal force application points, green for 
maximum SPL_avg(A) and red for flattest frequency response.
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An isotropic, un-damped aluminum plate of 0.3 m length, 
0.2 m width, and 1 mm thickness was analyzed both analyti-
cally and numerically in MATLAB and COMSOL 
Multiphysics, respectively. The analytical method employs the 
Principle of Virtual Work to calculate the displacement at the 
nodes of a mesh, and the Rayleigh’s Integral to evaluate the 
generated sound pressure. In both cases, the results were 
evaluated over a grid of points at 1 meter distance from the 
plate, providing more realistic and reliable results compared 
to the standard one point on-axis technique. The two 
approaches were cross validated by Sound Pressure Levels 
comparison, showing a very good matching between analyt-
ical and numerical methods, with differences in the range 
±3 dB. The effect of damping was evaluated too, by introducing 
an isotropic loss factor in the numerical model. The result will 
be employed in a subsequent paper, where the authors will 
compare the presented methodology against experimental 
measurements carried out on aluminum plates with a laser-
doppler vibrometer and a measurement-grade microphone.

Finally, the optimization of the position of the exciting 
force was studied. The central position resulted to provide the 
maximum total A-weighted sound pressure level, while a 
slightly off-center position resulted to provide the flattest 
frequency response. Optimal accordance between analytical 
and numerical solutions was pointed out in this case, too.
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